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1.0 INTRODUCTION

Conical diffusers are commonly used in wind tunnels, test facili~
ties, propulsion gystems, etc. As the flow moves through the diffuser,
the veloeity decreases and the static pressure increases. The amount of
the pressure rige, i.e., the diffuser performance, is strongly influenced
by the diffuser inlet flow conditions and the divergence angle. In
addition, the inlet boundary-layer thickness, the velocity profile, the
inlet Mach number, Reynolds number, and the turbulence intemsity all
affect the diffuser performance in such a complicated way that diffuser

design has relied almost solely on empirical data.

Using recent advances in computational fluid dynamics and turbu-
lence modeling, a computational method has been developed for incom-
pressible diffuser flows (Ref. 1). The method allows one to cbtain
numerical solutions of the Navier-Stokes equaticns irn finite-difference
form. A two-equation k-e model is employed for the turbulent flow along
with a sublayer coordinate transformation so that the flow field for the
entire diffuser can be computed for both separated and nonseparated flow

cases.

The purpose of the present study is to further verify the numerical
method developed in Ref. 1 by applying it to a conical diffuser configu-
ration with various inlet boundary-layer conditions. The development of
a two-equation turbulence model suitable for axisymmetric flows, a
multiple grid Gauss-Seidel iteration procedure for faster convergence,
and a series of numerical computations are presented along with compari-

sons with avallable experimental data,

2.0 GOVERNING EQUATIONS

The basic governing equations for the steady-state incompressible

turbulent flow can be written as:
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Continuity Equation:

gflx(rﬁ W ai,“a ¥ = 0 (1)

X~Momentum Equation:

R JORR GG DR O A R )}

5 (2)
{560 £ ¢ 7))
Y-Momentum Equation:
R R ORGSR
(3)

The turbulent quantities such as u'v' can be written in terms of

the mean flow quantities through the eddy viscosity concept as

Wl = - du , 2
u L% E 3k

v 2
?+ Ek

is the eddy viscosity and k is the turbulent kinetic energy

h v
where ¢

(TKE).

After substituting the eddy viscosity expressions into the momentum
equations (Eqs. 2 and 3), one can obtain the vorticity equation through
crogss differentiation. If one also introduces the stream function
concept into the continuity equation, the governing equations can be

replaced by the vorticity-stream function formulation as:
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Vorticity Equation:

30 _ %) . 1 ffi-adayel - .M 8,470
{612 6‘r2} v+ 1) {(u 2 dx / dx [\ 2 ar r b u[l] c"l‘}

5
W k) e rz )
2 22 0
(r?u _ 0":)(@_1__'_@)*2 (c?l.-=)(a_‘_@) -0
Ax? gr? g dr dxdr or dx
where
g - du
o Wy dr
Stream Function Equation:
2Y _ vl B\eV ., 5 -
E ML
where
5
v (r) r
5
= (1Y o ¥
¥ (r) dx
A second order pressure equation can also be derived, as shown below.
*p , eV _ (8\O g2 _ (00,5 . fa0
(e 2 (-0 - o (B 20) B (
7)

{5 (232) - & ()
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3.0 A TWO-EQUATION, LOW-REYNOLDS-NUMBER k-¢
TURBULENCE MODEL

The eddy viscosity, v_, is calculated through the Prandtl-Kolmogorov

t’
formula, i.e.,
v, = ¢ . E—z (8)

where the turbulent kinetic energy, k, and its dissipation, e, are

obtained from the partial differntial euqations presented below.
Turbulent Kinetic Energy Equation (k):
%k L 9% [ _ 1 L ak+ au _ (u+v] Ak
axz arﬂ v+ Vt) r 6_
N {2[ ﬁ)z (&Y +(:)2 5] + (2 + &) 9)
b +u) dx dr r 4 d
_ 1 k| _
v~ wv) {E+ 21’_‘.-_2} 0
Turbulent Kinetic Energy Dissipation Equation (g): 74, ur ﬁ 5
0% 4 %l 1 [u—i ("_t
dx?  9r? w+vjo,) ax \o (L a,
v, i\ i‘_ 2 i."_ 2
cl (v+vt.-"0é) Jl.g' {2 [(ax) * (ar)

10)
vy dn . dv (
ORI )
- 12,
C, w+rfa) k 0
The coefficients used in the present analysis are
C = Cyo + Ac
e = A
He 3 {a+ A/b) 4R)

HCIoR

10
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where

]
]

1.36 . ¢, = 1.92 [1-0.3 cxp. (-R2)]

at_ = 1.0

, (12)
A=k LR = k2
a = 1,100, b = 0.27

The coefficient C'I-lo is related to the two-dimensiomal {(2D) planar
flows while the coefficient Acu is attributed to the axisymmetry of the

flow. The coefficient ﬂcu can also be written as

ne = +f9u + @vy(EY . ¥

ACP- +(d"x - ar)(f) u. (13)
through the use of the continuity eguation. Justification for the form
of Eqs. (11) and (13) is given in the next section.

4.0 DEVELOPMENT OF THE EDDY VISCOSITY COEFFICIENT, Cy,
- FOR AXISYMMETRIC FLOWS

The eddy viscosity coefficient, cp, developed in Ref. 1 for 2D

flows is

- A
‘4o T 3 (a+ A/D) (14)

where A, a, and b are given in Eq. (12). The asymptotic value of o
for large A (i.e., away from the wall) is 0.09. When the medel given by
Eq. (14) is used for conical diffuser flow c;;culations, it produces a
faster centerline velocity decay than that indicated by experiment (Ref,
1). A similar result was observed in the case of a round jet (axisym-
metric) with a two-equation k-t model developed by Launder, Rodi, and
Spalding (Refs. 2 and 3),.

11
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In order to study the effect of o O the flow-field solution for
a diffuser, cIJ was lowered to a value of (0.56 cuo) throughout the flow
field, where cuo is given by Eq. (14). The resulting centerline velocity
is shown in Fig. 1. It can be seen that the calculated results using
the lower value of cp compare well with the experimental data by Okwoubi
and Azad (Ref. 4). However, the approach of simply setting c, = 0.56
o is not completely acceptable for diffuser flows becauge it changes

not only the flow-field solution but also the inlet condition.

In the study of axisymmetric jet flows, Launder, et al., (Ref. 2)
designed a formula for c, so that the round jet flow field can be computed
reasonably well with a two-equation k-c¢ model. The model, based on the

jet centerline decay, is

¢, = 0.09-0.04f (15)

where

2 0.2

) | (16)

; =| YG (duc —l duc
s 2An Vdx dx

The exponent of 0.2 in Eq. (16) is derived from numerical optimization
for the jet flow computation. The main objections to this model are:
first, the form of cu i1s somewhat arbitrary, and second, c:‘J in Eqs. (15)
and (16) is a function of x only, i.e., cIJ 1s constant in the radial
direction. Thus, & new model of cu was derived for conical diffuser
flows. Note that the new model must also be applicable to axisymmetric
jet flows because a jet-like flow can be obtained in a diffuger by
increasing the diffuser divergence angle, The requirements for the new
model for cu are: (1) it must be a simple function of the flow-field
variables, (2) it must be a function of both radial (r) and axial (x)
coordinates, and (3) it must recover the 2D planar form when the flow is

locally two dimensional.

12
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4.1 A NEW ¢, MODEL FOR AXISYMMETRIC FLOWS

The shear stress can be written in terms of the welocity gradient

in the Prandtl-Kclmogorov model as

!-.. = ,- d_ - )_)
p 6 ? (17)
= k2 fdu 4 gy
“u € (] I )
Let
Cﬂ = Ci"“ - .'_\.L‘# (18)
then

(19)

Q;IQ,-
|
o

T o= k2 du

- = + —— {2

b (“'rm 'ku)e (a, ¥
where Acu is the correction term for the axisymmetric flows.

Since the cu0 model works well for both planar and axisymmetric
pipe flow, it can be expected that Acu becomes important when 3u/dx is
nonzero. To retain the two-dimensional applications of the model, one
can relate Acu to du/dx + 3v/dy which vanishes in planar cases. Thus
for axisymmetric flow,

:_\.c# (g_ 3—,) =-x.8 (2o

The above relation can be written in the dimensionless form by
introducing a local velocity scale and a local length scale:
'
= - v . K
Ao = T T E (21)
where e is a constant, EK is a turbulent scale, and Aum is the charac-
teristic velocity, By equating the length scale EK to k3f2/s and taking

Aum as u_, Eq. (21) becomes

vk, K (22)
r ¢

13
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The coefficient cu1 could be determined from known distributions of
U Vv and, EK using Eq. (21). However, since detailed experimental data
will be
ul

determined from round free-jet data and verified for conical diffuser

for the conical diffuser are not available, the constant c

flows. At the centerline of a round jet, v/r is 0.042 uclrlf2 (Ref. 5)
and the length scale, QK’ is 1.2 rl/2' Therefore, one can write Acu as
0.042 u 1.2 ¢
[+

fo, = =g,y et M= g (0.05) (23)

Rodi's estimate of c]_l at the centerline of a round turbulent jet is
about 0.04 (Ref. 3). Therefore, from Eq. (23)

Ac c. =004
c - _ H = - Lo = _0.09-0,04 _ -~1.0 (24)

1 0.05 0.05 0.05

Thus, the final expresslon for the eddy viscosity coefficient cu becomes

v = o+ Ac

u po i (25)
where

P e S
po 3{a+ A/D)

-5 .¥.k, Vi
Acﬂ 8

4.2 THE c, DISTRIBUTION FOR A ROUND JET

The derived cu applies to the round jet flow with the mean radial
velocity distribution given by Schlichting's and Tollmien's theories.
The predicted c, distribution is compared with Rodi's estimated distri-
bution that was obtained from experimental data.

Assuming the length scale variation 13 small across a round jet,

il.e., & =12 r and that ¢ 1s 0,09, ¢ becomes a function of
4 1/2 1o U
{(v/r) only. From Eq. (25),

1.2 ¢
— - ) 1/2
¢, = 0.00 ~(2}- = (26)
(v/u)
= 009 - 1.2 /)
{r/) )

14
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The expression v/uc can be obtained from either Schlichting's

(Ref. 6) or Tollmien's theory (Ref. 7). From Schlichting's theory,

o

_ 3
Vo= l \{3 ‘m g _7?___’72_ (27)
‘ (1+17°)

where
= 1 farn & - 3 h Yy
7 T 3w r — und u, Bn P v with F = 0.01al
h
Thus,
7-119°
v oo D.p3=E2 r 5
e V3 " ] 1‘2 : (28)
: (*:’7)
Also, from Ref. (6),
X v
fiss = 3.27 —L = (5.27 * 0.0161} «x
: ¥X
and
r_ - 1 R - am__ 7
Moe (5.27 500161 X o7 e (29)

Substituting Eqs, (28) and (29) into Eq. (26), the final expression for
¢, becomes
u

(617
e, = 0.09 - 00429 X34 7 (30)
2
(in®)
The c, distribution of Eq. (30) is shown in Fig. 2. For large values of
n, t.e., at the outer edge of the jet,

i ' "3 (31)

Therefore, the asympototic value at n + » ig 0.09. This is consigtent
.with the flow behavior, because as one moves away from the centerline
the factor (1/r) diminisheg and the flow behaves more or less like a
two~dimensional planar flow. The r_'u distribution obtained with Toll-

mien's velocity distribution is also shown in Fig. 2. Rodi's estimate

15
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of c for a round jet, based on Wygnanski, et al., measurements, is also
included for comparison. Although the trend and level of cu near the
centerline region is roughly the same, the behavior of Rodi's e, is quite

different from the present theory.
5.0 BOUNDARY CONDITIONS AND COORDINATE TRANSFORMATION
5.1 BOUNDARY CONDITIONS

Boundary conditions for the diffuser flow can be divided into four
reglons, namely, the inlet condition, the exit condition, the symmetry

condition, and the wall condition.

5.1.1 Inlet Boundary Condition

Two types of inlet conditions are used in the present analysis,
the fully developed pipe flow inlet condition and a boundary-layer inlet

condition with a potential core region.

For the fully developed pipe flow condition, the profile is ob-
tained by solving the three stations in the inlet section of the dif-
fuser until convergence i1s reached. The convergent pipe flow solution
is then held fixed as the inlet con&ition for the subsequent diffuser
flow-field computations. With this condition, the only parameter needed
to prescribe the profile is the inlet Reynolds number; all other initial
condition parameters, i.e., velocity profiles, TKE profile, etc., are
computed and are self-consistent. For a nonfully developed profile,
i.e., a boundary layer with a potential core region, prescription of the
inlet condition 18 more involved. Every flow parameter (2, u, v, ¥,

k, e, and ut) must be given consistently, not only in the core region
but also throughout the sublayer. In the present analysis, the boundary-
layer thickness (ye) is first given and the total shear stress distribu-

tion is calculated from

2
Thor = v; [1 + cos (\,)r - n)] 0< y<y, (Boundary Layer)
r ) _ (32)
Tiow = 0 1¥>y, (Core Region)

16
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The mixing length distribution is obtained as

£m = 0.09 tanh (031 ¥V, |
m an 0T ) Yo (33)

for both the boundary layer and core regions. Equations {32) and (33)
are then used to compute the verticity distribution through the modified

Van Driest formula

bt *(32)

o 1 +\j]+[2 Qm™ n("rz_m)]? (34)
where .
Qo = Lm v _D={]~E(";T+)}

= XL AY = 2%

n+

-+
w o
P
The velocity and the stream function are then ovbtained from Eq.

(34} through a numerical integration scheme. The free-stream values of

the turbulent kinetic energy and the eddy viscosity are computed from

- 3 .
kc - 7 (k1 ul.c]2
(35)
= . (38
YIe k2 Ui,c ('g)
where kl and k2 are free-stream proportionality constants. Typical
values for the present analysis are
kl = 0.01 and k2 = 0.002 (36)
Finally, k and e are computed for the boundary-layer region from
= Em}' ' ﬁ
v, dy
=% fdu
k= 53 (ay) (37)
€ = p - k_Z
(N

17
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b.1.2 Exit Boundary Condition
With a diffuser incorporating a constant area section at the exit

(tail pipe), the tail pipe exit boundary condition can be specified by
the parallel flow condition, i.e., 3/3x = 0,

5.1,.3 Symmetry Condition
The symmetry condition is imposed to reduce the computatiomnal

domain. Along the line of symmetry (r = 0), the following conditions

are satisfied:

Y =0,

do-g-o,

or (38)
a_k=6_€=

dr oOr 0

v =90

5.1.4 Wall Boundary Condition

Since both the core region and the sublayer region are solved
numerically with the present formulation, the wall boundary condicion is

applied at ¥y = 0 as

¥ = constant,

@ =09x - du,

Ix I (39)
yi=k=(=0-
u=yvy=900

5.2 COORDINATE TRANSFORMATION WITH A VARIABLE

SUBLAYER STRETCHING

In the present analysis, the governing equations along with the
boundary conditions are solved in a transformed rectangular domain.
This is achieved by transforming the diffuser geometry into a rectangu-
lar domain followed by a sublayer stretching so that adequate resolution

can be obtained in the wall layer region, see Fig, 3. The sublayer
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stretching is designed to adjust automatically for the sublayer velocity
gradient. In addition, the relative number of grid points in the sub-
layer and the core region can also be varied to compensate for the inlet

boundary-layer thickness.
The complete coordinate transformation functions in the core and
the sublayer regions are listed below along with the transformatien

factors,

Core Region Transfarmation Functions

r = 5(x) -{1- I:C' IEITm“"f] + g(lrm“—ﬁ"l)z]
- % [cnsh [(le“-l-‘) + g{Fm"—l:—])z"l]:I* F]}-UgFSFD

i‘-')= +1 _ _ . -
dr S(x) " [1+ 2z (Fm”—F— 1)] . ¥C'+lanh [{Fm"— ry « glrm“_— P =1 = I(H}

) @) s %95 T [Gare= ¢ 8pug=i-0" - 10] (40)

-+

[1+ 26, =i-0] + sebn [, -7 + g(Fm“—F-'I.)z—l.O]f

26 = -5 < (BD)- (&) [0 gy - (Y ]
)= (%) - St - 5
%)
2 r dr iy T
5@ 5w
dr
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Sublayer Region Transformation Function:

-
1

S{x) {1 —% - tnnﬁ(Fmax—lT)} . F,SELr

s et [BG,,,- 7]
6' - BF - T
5 (a_r) W

- B (E) s [B G, -] - sn[B 5, -]

ar

e~ 750 (8) - 8 -] () @
() - {5 g - (WY -}

S g s [8G -7 (£) sn [8G,,,~7]
£ (%)

where a, B, c, g and F are coefficlents of transformation (Ref. 1) .
These coefficients are determined through a matching procedure at location
(which is set equal to unity in the present analysis). By selecting
the proper value of ;max (which must be greater than ;-0), one can adjust
the relative number of grid points in the sublayer and the core regiomn,
For example, with ;o = 1 and ;max = 2, there will be 50 percent of the
gnd points in both the sublayer (r <r < rmax) and the core (0 < r <

r ) regions.

6.0 NUMERICAL METHODS

6.1 A GENERAL FINITE DIFFERENCE FORMULATION WITH DECAY
FUNCTIONS

The governing equations in the transformed plane (;:, r) can be

written in a standard form as

{a 6_22+ai}"{blg—f+bzg—?}+d=0 (42)
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where ¢ represents the flow variables &, ¥, k, and €. The coefficients

a;, a,, b1, b2, and d are given in Appendix A. The general finite dif-
ference formulation of Eq. (42) is

(-‘_1) Pty 28, vy _ (Ei (’) ‘f’ifl.l"f’i—l.j
G &2 S B

: % (43)
*(E) i‘?5i.j+1—2"ii_,“ I _(:_2.(;) ‘-ﬁ’i,]-—l‘;‘f”i.j-] %Jr d =0
G, &f T3 ) 207 |
where the decay functions Gi and Gj are evaluated locally as
G = 1.0 - 0.0625 (RY* . |R| <2
= 2 - _1 |
R W2 |R{>2
b (44)
where G = G, - when R = n_l - &%
! 1
b

andG = G,»when R = -2 . 57

The use of the decay function assures the numerical stability as well as

the accuracy throughout the flow field for a wide range of Reynolds
numbers (Refs. 8 and 9).

6.2 GENERAL PROCEDURE WITH A STANDARD GAUSS-SEIDEL
POINT ITERATION METHOD

The finite difference equation [Eq. (43)] can be solved in several

For simplicity, a standard Gauss-Seldel iteration method is used
to obtain the solution.

ways.

The method updates the field values with the
most recent available neighboring point data in the following way:
n+1 n o+l

n o+l n
G Pl v By b+ Gy By H Cy By g (45)
¢i.j Cu
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where the superscript n denotes the values at nth iteration, (m+1)

denotes the updated value, The coefficients, C1, CZ""’ C4 and CU are

a b, « 8%
() 25)
1 (3!'12 Gi 2:-11

a, 1 bo - 8F
- () (6 = (46)

CuU=0C +

The general flow chart which describes the sequence of the solution pro-

cedure is presented in Fig. 4.

7.0 FACTORS AFFECTING THE RATE OF CONVERGENCE
OF THE POINT ITERATION METHOD

The advantage of using the Gauss-Seidel point iteration method to
solve coupled algebraic equations is well known. The method can be easily
programmed and does not require excessive computer storage. However,
there are two important factors which affect the rate of convergence,
namely, (1) the total number of grid points and (2) the initial flow-
field guess. As the total number of grid points is increased to obtain
better resolution, the rate of convergence decreases. This is because
the information at the boundary points must travel a longer distance to
reach the whole flow field in the elliptic type of flow calculations.
Since the point iteration method can update only one point value at a
time, the larger the number of grid points the slower the convergence
rate. On the other hand, the rate of convergence can be greatly im-
proved with a good initial flow-field guess.
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7.1 INITIAL GUESS FOR DIFFUSER FLOWS

It is well known that a turbulent boundary-layer profile can be
represented by the superposition of a logarithmic profile and a wake
profile (e.g., Ref. 10). The representation is commonly known as Coles'
law of the wake. Coles' concept is generalized in the present approach,
with the logarithmic part of the profile replaced by a function related
to the fully developed pipe (or channel) flow profile at the diffuser

inlet and with the wake portion represented by a cosine function.

The initial velocity field is obtained as a linear combination of
the inlet profile and the wake profile, Fig. 5, i.e.,

[ uy (47)

where u, is related to the inlet velocity profile, ups as

o, (E%) - (;ﬁf T (48)

and the wake component of the profile, u, is defined as

I+ cox (T"_ r)
IY= 4 . — NSO/
uy, b.c

3 (49)

The centerline values LI and u, . are the only unknowns in Eqs.
? ¥
(48) and (49), From Egq. (47),

ua.c = u. - ub.l: (5‘0)

u ——}l'i-u] (51)

Therefore, the final expression for the velocity profile can be

written as

_b.- “b,c), Lt eos ('slo ), (52)

+
u LT 3
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The unknown U . in Eq. (52) can be determined from the conservation of
]

mass. By integrating Eq. (52) across the diffuser, one obtains

SO{x) .
j uy - rdr =f u - rdr (53)

The right-hand side can be evaluated as

S0(x) 30 50
tx x) (-0, ) (x) [1+ oos (L .r)]
fu - tde = —Eﬁ cupocordr T Uy o 250 - rdr
[+ ] E] !
SO{x)
= (llc— " c} + Up,e 502
T u; rdr —5= 5
[4]
Therefore,

O(x)
ful e = (ucu_ oy c)/i up - rdr + _u_bz,i {5_;.)_2} (54)
1.c

e

In terms of the stream function, ¥ = (furdr), Eq. (54) becomes

“e” "be . 2 Lfr r Uhoe 5_0_2
(i) o0t [ () a(p)e e )

AY, =
_ 2 i Huh, ub. 502 (55)
= AV, (S0) (G“I.c o) + Zhus {T}
where
1
A‘P=f uy rdr
(1]
Solving for ub,c’ one obtains
AW [1-(50? ig_]
u
= I.e
"be 507 50t . av_L (56)
3 ul,c
When the wake component vanishes, i.e., u L= 0, Eq. (56) becomes
3
1 - (5002 —= =0 (57)

uI.l:
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or

ll-l ¢

" " o (58)

In general, the wake component (ub c) is nonzero and the centerline
L ]

velocity (uc) is greater than that given by Eq. (58). 1In order to

increase u, value from Eq. (58), an effective area concept is introduced

as
u _ lJl ¢ ( )
7 z 59
¢ B0
The simplest form of soeff is
S0tx) ;= [SO(x) - 1}=A + Lo (60)

where SO(x)eff is shown in Fig. 6

The unknown constant A (0 < A < 1.0) depends upon the diffuser
divergence angle. In general, the value of ) decreases from unity as
the divergence angle increases. No formula has been derived to deter-
mine the exact value of A, Therefore, its specification requires some
experience about the diffuser flow solution. For an inexperienced user,

in general, A = 0.5 is a good initial guess.

The complete initial flow-field distribution of the velocity, the

vorticity, and the stream function (u, £, ¥) can be derived from Eqgs.
{56) and (47) as

_ 14 cos —'1(%.7?
u ($)= up () - ucu—lzl'ﬁ oy, —-—2(—50—) (61)
u_ = u N :
0 (3[6) = Q. - °u[lc]"° + 1'2"’ (S—E) - sin (§% r ) (62)

[ -]

(u —u, I(SOH2
i = . b,c b, r 50 . . sl LA
¥ (gb—) V() < u + 2‘: {r2 + = [r sin (5’6 r)

~ sin (E% . r)]} (63)
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fu —u, } u
= b * _bec | el i
v, (S—B—) S v {r) - c—u'.r.—l-"'- + 0.1 2': [:r sin Sg r):l (64)

for any axial location, x.
7.2 MULTIPLE GRID GAUSS-SEIDEL ITERATION METHOD

The Gauss-Seldel iteration methed is a point iteration method which
updates one point at a time with the most recently available values at
the neilghboring points. It can be easily seen that the rate at which
the information from a boundary is propagated to the rest of the flow
field depends upon the total number of the grid points in the flow
field. When the flow-field pattern is falrly complicated and it is
necessary to use a large number of grid points to improve the accuracy of
the final solution, the rate of convergence becomes slow with the point
Gauss-Seidel iteration method. A simple and efficient multiple grid

method has been developed to speed the rate of convergence.

A series of grid systems can be constructed for a rectangular

domain, Fig. 7, with grid spacing ratio equal to (1/2)N.

The general multiple grid GCauss-Seidel iteration scheme can be

written as
Do 100 J = JL,JR, I,

n+l n n+l n nt+1

- . (65)
¢i,j = {C, K + C, @it Ca TP Ml C, S j-L

+ DN /{C, +C, + €+ CY

4

100 Continue
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With L equal to unity, one recovers the conventional single grid system
Gauss-Seidel method. For a dual system, L is set equal to two for the
first N iterations to obtain a solution for the coarse grid system,
Before continuing to a finer grid system (with L = 1), it is necessary
to obtain the midpoint value with a linear interpolation scheme., The
flow chart for the process is shown in Fig. 8. Since the coarse grid
system has only one-fourth of the total grid points of the finer system,
the rate of convergence is a factor of four faster. Another advantage
is that the fast convergent solution obtained in the coarse grid system
is used to obtain the initial guess for the finer grid system through an
interpolation routine. In the present solution procedure, a dual grid
system, i.e., from a 17 by 31 coarse system to a 33 by 61 fine grid
system 1s adequate. The operation is done automatically in the computer

program,
8.0 RESULTS AND DISCUSSION

The numerical formulation and the turbulence model presented in
the previous sections are applied to the computation of geveral conical

diffuser flows.

Although much experimental data on the performance of subsonic
diffugsers are available, few of these data are suitable for verification
of the numerical analysis. The major emphasis in most experimental
investigations has been placed on overall performance, i,e., pressure
recovery, and only rarely were the mean velocity profiles at the inlet
section and in the divergent section measured. Even more rare are
experiments in which the turbulence properties in the flow field were
measured. Recently, however, experimental data on both the mean velocity
and turbulence properties in an 8-deg conical diffuser were obtained by
Okwuobi and Azad (Ref. 4); the inlet flow was a fully developed pipe
flow. These data provide a good test case for comparison with the

numerical analysis because the fully developed entry conditions are well
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established and can be predicted with confidence. In addition to the
correlations of the Okwucbi and Azad experiment, comparison of the
numerical results with other experiments (in which the iInlet conditions

are less well-defined) are described in this section.

8.1 NUMERICAL SOLUTIONS OF 8-DEG CONICAL DIFFUSER WITH A
FULLY DEVELOPED INLET PROFILE

The geometry of the 8-deg conical diffuser is shown in Fig, 9.
The area ratio is 4:1. The computed velocity field at several axial
stations is also shown in Fig. 9. It can be seen that the velocity
profile changes from that of a fully developed inlet pipe flow into a
wake profile in the diverging section, The law of the wall regicn also
diminishes and the wake portion of the profile becomes dominant at the
exit section of the diffuser. The comparison between the computed and
the measured velocity profiles at two stations is shown in Fig. 10. The
agreement between the experiment and theory is excellent. In order to
check the sensitivity of the computed flow field to the present turbu-

lence model, a small perturbation on the cu formula from

to

¢, = ¢, 1.4 Acp (66)

was used. The modification has no effect on the fully developed imnlet
velocity profile because the flow is parallel so that the radial velpc-
ity component, v, vanishes. The veloeity profile at the downstream
station (x/DI = 5,95) is only slightly changed'by the cu perturbation as

shown in Fig. 10.
The velocity profile nmear the wall is shown in Fig. 11. The line-

arity of the velocity profile in the sublayer region is clearly evident

and the agreement with the experimental data is excellent.
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The decay of the centerline velocity is shown in Fig. 12 for two cu
models. The c]_I = cuD model gives a faster velocity decay as expected.
On the other hand, results obtained from the new cu expression agree

very well with the experimental data.

The total shear stress distribution is given in Fig. 13, The com-
puted results agree well with the measured total shear streas at x!DI =
1.1% in the diverging section. At the downstream station (x/DI =
5.95), although the shape of the total shear stress profile is qualita-
tively correct, the maximum predicted value 18 about 15 percent higher
than the measured value. The measured turbulent kinetic energy dis-
tribution, Fig. 14, is also lower than the prediction at the downstream
station, especially near the wall, 1In this region, the turbulent fluctua-
tion velocities axe of the same order of magnitude as the local velocity
(u). 1In this situation, the hot-wire probe measurement is questionable.
Usually, the x-probe yields a lower measurement of the turbulent intensity
because of the higher instantaneous flow angularity and negative velocity,
hence an underestimated shear stress and TKE. The agreement between
calculated and measured TKE near the diffuser inlet 1s quite good. The
calculated turbulent kinetic energy distribution near the wall, shown in
Fig. 15, is lower at the downstream station than at the inlet. This is
caused by the lower TKE production associated with the downstream veloc-
ity profile. The ratio between the shear stress u'v' and the TKE is
shown in Fig. 16. At the inlet, the ratic quickly rises to a maximum
value of 0,3 and drops gradually to zero at the centerline. Experimental
data for fully developed pipe flow by Laufer (Ref. 11) are zlso included
in Fig. 16 for comparlson. At the downstream station, the profile is
skewed toward the centerline and the maximum value of the ratio also

increases slightly.
In Fig. 17, the distribution of the eddy viscosity coefficient,

€ 1s shown for several axial stations. At the inlet, the ey

distribution is identical to that of the previous model since the ac
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term is zero. The cu distribution drops immediately in the diverging
section, The level of <, then increases slowly with increasing distance
in the diverging section. It is important to note that the average
value of cu in the diverging section is always lower than the inlet cu

level,

The wall pressure coefficient, Cp, is presented in Fig. 18. The
computed pressure coefficients agree well with measured values except
that they are somewhat overpredicted in the downstream stationa. Part
of this difference could be attributed to the effect of the computa-
tional grid size. Another factor is that the numerical computation is
carried out for a diffuser with a tail pipe while the experimental
configuration did not have a tail pipe. It has been shown, Refs. 12
and 13, that the tail pipe increases the pressure recovery somewhat.
Therefore, the higher predicted pressure recovery is consistent with

experimental evidence.

8.2 NUMERICAL SOLUTION OF 8-DEG CONICAL DIFFUSER WITH A
BOUNDARY-LAYER INLET PROFILE

Computations of an 8-deg conical diffuser flow field were made with
two Iinlet boundary-layer thicknesses. The velocity distribution for the

thin boundary-layer case, 5. = 0.05 DI, is shown in Fig. 19. The dif-

ference between the velocit$ profile with a boundary layer and the
fully developed one is the existence of a potential core. It cam be
geen from Fig. 19 that the potemtial core remains throughout the dif-
fuser section, The wall pressure coefficient, Cp, is shown in Fig. 20,

Comparison with the experimental pressure recovery is good.

The velocity distributions for the thicker boundary-layer case,
(GI = (0.2 DI) are shown in Fig. 21, The potential core region is
smaller than in the thin boundary-layer case, otherwise, the development

of boundary-layer profiles is about the same. The total shear stress
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distribution is shown in Fig. 22, Upstream of the inlet, the total
shear stress is highest and constant near the wall, {i.e., Teot = Tu'

In the diffuser section, the maximum total shear stress location moves
away from the wall and the maximum value increases., The shear stress
along the wall decreases in the diverging section. The turbulent
kinetic energy distribution is shown in Fig. 23. The free-stream
turbulence level was set equal to one percent which remains approxi-
mately constant in the potential core region, Just as was observed for
the shear stress, the location of the maximum TKE moves away from the
wall In the diverging section. The eddy viscosity distribution, nor-
malized by the local centerline velocity and the local boundary-layer
thickness, is shown in Fig. 24. Notice that, as x increases, the maximum
eddy viscosity increases greatly from the boundary-layer value of order
D.001 near the entrance to almost the turbulent mixing layer value of
order 0.01 at the downstream station. The length scale derived from
the turbulent kinetic energy dissipation is shown in Fig. 25, The
maximum normalized length scale in the boundary layer increases from
0.65 to about 1.4 between the inlet station and the downstream station.
Finally, the wall pressure coefficient, Cp, is presented in Fig. 26. The
exit value of 0.77 is slightly lower than the previous case with a
thinner inlet boundary layer (Cp = (0.8). This is conslstent with
experimental evidence that Cp decreases with increasing inlet boundary-
layer thickness and that CP increases again when the iInlet condition is
fully-developed (Refs. 13 and 14). The effect of the inlet boundary-
layer thickness on the pressure recovery goefficient for an 8-deg
conical diffuser is shown in Fig. 27, Although the trend is well pre-
dicted, the predicted Cp level 1s higher than the data of Ref. 13,

8.3 NUMERICAL SOLUTION OF 16-DEG CONICAL DIFFUSER WITH A
BOUNDARY-LAYER INLET PROFILE

The computed velocity distribution for a 16~deg conical diffuser
with a thin inlet boundary layer (SI = 0.05 D) is shown in Fig. 28.
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The velocity at the exit station (x/DI = 3.58) is negative near the wall
indicating that the flow 1s separated. This is in agreement with the
experimental evidence observed by McDonald and Fox, Ref. 15, and Senco
and Nishi, Ref. (12}, who found the 16~deg conical diffuser with an area
ratio of four lies within the separated flow regime of the diffuser
performance map. The pressure coefficient CP is shown in Fig. 29,

The agreement with the experimental data (Ref. 12) is qualitatively
good. The experimentally observed separation point detected by tufts
lies somewhat ahead of the predicted point of separation. This could be
caused by the coarse grid size (Ax) used in the computation. However,
the use of tufts only provides a crude estimate of the peint of geparation.
Thus, the agreement is probably as good as one could expect.

84 NUMERICAL SOLUTION OF 13-DEG CONICAL DIFFUSER WITH A
BOUNDARY-LAYER INLET CONDITION

The measured and calculated velocity distribution for a 13-deg
conical diffuser is shown in Fig. 30. The agreement with the data,
Ref. 16, is qualitatively good at x/DI = 3.2, The experimental data,
obtained with an x~probe hot wire, shows a larger tail region near the
edge of the boundary layer. Near the wall, the hot-wire measurement is
slightly higher than the calculated velocity values because of high
local relative turbulent intensity. At a far downstream statiom, x/DI
= 5.9, the flow separation is clearly indicated in the calculated velocity
profile. Under the separated flow condition, the conventionmal hot-
wire probe is not capable of distinguishing the positive and negative
velocities, As a result, the hot-wire measurement is always positive in
the separated flow region. The pressure coefficient Cp is shown in Fig.
31. The agreement between the data and the computed value is good. The
predicted value of Cp is slightly higher than the data at the exit. The
point of separation is also included in Fig. 31. The present predicted
point of separation lies among the separation points predicted with

various assumptions in the boundary-layer theory (Ref. 16). No experi-
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mental evidence of the point of separation was obtained. Furthermore,

no comparisons were made between the computed turbulence flow field and

the data because of the apparent misalignment problem of the hot-wire x-

probe used in the experiment as discussed in Boldman's report (Ref. 16).

9.0 CONCLUDING REMARKS

The important results of this analytical and numerical study of

turbulent £lows in conical subsonic diffusers are:

1. A cu formula for axisymmetrical flows has been developed for
the low Reynolds number, two-equation k-& turbulence model
which unifies the computation of 2D planar and axisymmetri-

cal flows,

2, An initial guess procedure and a multiple grid Gauss-Seidel
iteration method have been developed to increase the rate of

convergence.

3. Numerical computations of several separated and nenseparated
conical diffuser flow fields, with nonuniform inlet condition
varying from a fully developed pipe flow profile to a thin

boundary-layer profile, are in good agreement with available
experimental data.
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Figure 2. Distribution of the eddy viscosity coefficient, ¢y, for a round jet.
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Figure 7. A multiple grid system for rectangular
computational domain,
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Figure 8. A dual grid Gauss-Seidel iteration scheme.
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Figure 9. Development of velocity profiles in 8-deg conical diffuser.
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Figure 10. Velocity distributions in 8-deg conical diffuser.
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Figure 11. Velocity distributions near the wall in 8-deg conical diffuser.
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Figure 12, Centerline velocity distribution in 8-deg conical diffuser.
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Figure 13. Total shear stress distributions in 8-deg conical diffuser.
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Figure 14. Turbulent Kinetic energy distributions in 8-deg
conical diffuser.
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Figure 15. Turbulent kinatic energy distributions near the wall
in B-day conical diffuser.
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Figure 16. Turbulent shear stress-TKE ratio in 8-deg
conical diffuser.
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Figure 17. Distributions of the eddy viscosity coefficient, Cy,
in B-deg conical diffuser.
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Figure 18. Pressure coefficient in 8-deg conical diffuser with fully
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Figure 20, Pressure coefficient in 8-deg conical diffuser
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Figure 21. Velocity distributions in 8-deg conical diffuser with
a houndary-layer inlet profile, §; = 0.2 D,.
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Figure 22. Total shear stress distributions in 8-deg conical diffuser
with a boundary-layer inlet profile, 5, = 0.2 D,.
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Figure 23. Turbulent kinetic energy distribution in 8-deg conical diffuser
with a boundary-layer inlet profile, 5, = 0.2 D,.
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Figure 24. Eddy viscosity distributions in 8-deg conical diffuser with
a boundary-ayer inlet condition, §, = 0.2 D,.

8L-LL-H1-2Q3V



AEDC-TR-77-78

1/6 (x)

Length Scale, £/6(x) = k1%

1.

.4

x/DI = ~1.19

0.2 0.
Lateral Distance, y/(0.5 D(x)

Figure 25. Length scale distributions in 8-deg conical
diffuser with a boundary-layer inlet condition
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Figure 26. Pressure coefficient in B-deg conical diffuser with a
boundary-layer inlet profile, §, = 0.2 Dy.
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Figure 27. Effect of inlet boundary-layer thickness on the pressure
recovery coefficient for 8-deg conical diffuser.
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Figure 28. Velocity distributions in 16-deg conical diffuser with
a boundary-layer inlet profile.
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Figure 29. Pressure coefficient in 16-deg conical diffuser
with a boundary-ayer inlet condition,
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Figure 30. Velocity distributions in 13-deg conical diffuser
with a boundary-layer inlet condition.
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APPENDIX A
GOVERNING EQUATIONS IN TRANSFORMED COQORDINATES

The standard form of the derived equations, Ref. 1, is

2% g% ¢ g
{la£+zaé} {b‘£+b26_§Fb}+d=0 (a-1)

where ¢ represents the flow variables, i.e., 2, ¥, k, and €. The cor-
responding coefficients, a5 84, b.], b2, and d are given below for each

of wvariable, 2, ¥, k, and e.
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Y-Equation

a, =1

w = [(3) - (8)]

by =0 (A=3)
2 -

by = =S5 - 5+ 2 (4)
2 .

d=2gi<;pf 35)+ Po

k—Equation
a, =1

b, = 1 3[\' - (&) 2 - 26n)] (&) (A-4)
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) 1y ge) + [2 ()] (2]

d =2 () dk

dx /J digdr dx
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2

In the vorticity-stream function formulation, the pressure field is
decoupled from the momentum equations., Therefore, the pressure field
can be calculated separately from the pressure equation, In the trans-

formed plane, the pressure equation can be written as
92 a¢ F
e (3 "—’)2]
*’a?'[( i)

(A-6)

- ]Q-’
L..JIQ.!
S
| I—

-+

(-]
—_
Q.-l"-‘.b
] -
or -1
b [
Ll
-

1]

on
o

where

) [ + (28)- - @)

2 (Qi a;?;r (—"2‘;“-2 E

-~y A (O Q4 . a0 g\ 3%
ua,_(r) Sur+\ax+\a—;—_

The corresponding coefficients for the pressure equation in the standard

form are:
a = 1
4 7 [(3—1)2 ¥ g_:-)z]
b, =0
w2 (2 @) -9

-a=z(ﬂ—::>§:sf-n2+33:(—‘ 2 F (G (@) (3]
2

CE GG B ) i D)
0
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NOMENCLATURE
A Parameter
a Constant
a,, a, Coefficlents
b Constant
b1,b2 Coefficients
C Transformation coefficient
C1,02 Coefficients
CP Pressure Coefficient, _“éE—:E
0.5 puI

cu’cu0’cu1 Eddy viscosity coefficients

Acu Eddy viscosity coefficient correction for asxisymmetric
flow

D Local diffuser diameter

d Source term

F Transformation parameter

f Rodi's <, correction for axisymmetric jet

Gi’Gj Decay Functions
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g Transformation parameter
K Constant in Schlichting’s round jet theory
k Turbulent %inetic energy
kl, k2 Proportionality constants for k and v, in potential core
2 _ Length scale
n Iteration number
P Pregsure
R Parameter
DIGI
Re Reynolds number,
Ri'Rj Grid Reynolds number
r, ;‘ Radfal coordinate in physical and transformed plane,
respectively
r Diffuser wall coordinate in transformed plane

max -

S(x), S0{x) Diffuser wall coordinate in physical plane

u Average velocity
u,v Velocity components
Au Velocity excess in Rodi's e model
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ul ,V' ’W'

vk

YG

o,B

20

Turbulent velocity components

Wake component of the velocity profile

= d;;732 Friction Veloecity

Axial coordinate

Lateral distance measured from wall

The width of a round jet in Redi's ¢, model
Transformation parameters

Index, zero for planar configuration, 1 for axisymmetric

coniigurations, or incremental or boundary-layer thickness
Turbulent kinetic energy disaipation

Total diffuser divergence angle

Mclecular viscosity

Eddy viscosity

Constant

Shear stress

Dependent variable

Stream function
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114 Vorticity

n Similarity parameter for round jet

p ‘Density

A Constant

SUBSCRIPTS

c Centerline

e Edge of the boundary layer

I Inlet section

max Maximum

a Sublayer, core region solution matching location
T, tot Total

w Wall

SUPERSCRIPTS

+ Dimensicnless quantity with the sublayer scale
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